Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies in the Fibrinogen Studies Collaboration to assess the relationship between usual levels of plasma fibrinogen and the risk of coronary heart disease, allowing for measurement error in plasma fibrinogen and several confounders.

Original publication

DOI

10.1002/sim.3530

Type

Journal article

Journal

Stat Med

Publication Date

30/03/2009

Volume

28

Pages

1067 - 1092

Keywords

Bias, Cardiovascular Diseases, Epidemiologic Studies, Fibrinogen, Meta-Analysis as Topic, Models, Statistical, Multivariate Analysis, Regression Analysis